Pony ORM JavaScript Integration

Pony simplifies writing business logic at the backend. But what if you need to work with the
same objects at the frontend? We thought it would be cool to have such an ability. Now you
can do it using pony.js module.

The workflow consists of 5 steps:

Sending objects from the backend
Getting entity objects at the frontend
Working with objects at the frontend
Sending objects to the backend
Storing object in the database

akrwnN-=~

Now let’s look into the process in the detail.

1. Sending objects from the backend
We start with extracting objects from the database using Pony queries:

students = select(s for s in Student).order_by(Student.name)

Now we are going to send them to the backend. For this purpose we use the function
to_json():

to_json(db, students, include=[Student.group])

The to_json() function converts passed objects to JSON representation. By default, this
function converts all attributes except lazy attributes and collections to-many. In case the
object has to-one relationship, only the primary key of the related object will be included by
default. If you need to get lazy attributes, collection or all attributes of the related to-one
object, you need to specify this attribute in the include list.

The to_json() function returns a JSSON structure which contains the database entity schema
and all the necessary objects. The schema is needed in order to reconstruct entity objects
with all relationships at the frontend.

Below is the diagram of the whole process:

Frontend Backend

AJAX request

Frontend sends AJAX request to the backend [:> Request handler generates response

user data

students = select(s for s in Student)
students = [s1, s2, s3, s4]
return to_json(db, students,
identity map include=[Student.group])

var students = unmarshalData(json);

PN 7 . - -
~ ~ (Geparment) [Group
/ ~~ |
7 S
-

- ‘
list of references IdentityMap I . schema
==

students =[s1,s2,83,84 [Course
\ N TN .
enn) Lg.men,zu usentl) fusentsl) | | ! |
NN \ N
~ 7 <
L

,
AY
J/

p N
‘Grnug[‘\] up(2) |
\

TN
§

P

2. Getting entity objects at the frontend

When the frontend received the JSON structure from the backend, it needs to unmarshal this
data and link object the same way they are linked in the database. For this purpose you need
to use the unmarshalData() function. As the result, the function returns the value which was

passed to the to_json() function (list of students in our example) and also creates several the
following dictionaries in the pony namespace:

pony.entities - contains entity definitions
pony.objects - contains entity objects, which can be referenced by a unique integer id
(object’s _id_ attribute)

Each object has the _pk_ attribute, which keeps the primary key of the object. In order to get
an object by its primary key, you need to use the method get_by_pk() of an entity. For
example:

var obj = pony.entities.Group.get_by pk(103)
This method doesn’t send any new requests to the backend. If the object exists in the

database, but was not loaded to the frontend, it throws an exception, e.g. “Group with primary
key 101 not found”.

3. Working with objects at the frontend

At the moment, PonyJS is integrated with the KnockoutJS framework (http://knockoutjs.com/)
and each entity object attribute is represented as an observable
(http://knockoutjs.com/documentation/observables.html)

It allows easily establish two-way binding between entity objects and fronted Ul using the
MVVM model (http://knockoutjs.com/documentation/observables.html)

Each attribute is represented as a function. When you need to read the value of an attribute,
you call this attribute without parameters. When you want to assign a new value, you pass
this value as a parameter:

s = pony.entities.Student.get_by pk(1)
var name = s. name()
s.name(‘New name’)

Object keys

Each object has the following attributes with unique values:

Instance._pk_ - database’s primary key. Equal to null for a newly created object.
Instance._id_ - unique integer id, assigned from a sequence at the frontend

Creating new objects
In order to create a new object, you need to call the create() method of entity:
pony.entities.Student.create({name: ‘John’})

attrs is an optional parameter that allows to specify the attribute values.
You also can call the create() method of a relationship attributes. In this case a newly created
object will automatically have a relationship:

g = pony.entities.Group.get_by pk(1)
g.students.create({name: ‘John’})

Establishing and dropping relationship
Each relationship attribute to-many has add() and remove() methods:

s1 = pony.entities.Student.get_by pk(1)
g2 = pony.entities.Group.get_by pk(2)
g2.students.add(s1)

http://www.google.com/url?q=http%3A%2F%2Fknockoutjs.com%2F&sa=D&sntz=1&usg=AFQjCNGtG8Ew683wv6wq8QvVdGEsk3WIOA
http://www.google.com/url?q=http%3A%2F%2Fknockoutjs.com%2Fdocumentation%2Fobservables.html&sa=D&sntz=1&usg=AFQjCNH3IhqUsOLZKglZN0TBosjaS6vluQ
http://www.google.com/url?q=http%3A%2F%2Fknockoutjs.com%2Fdocumentation%2Fobservables.html&sa=D&sntz=1&usg=AFQjCNH3IhqUsOLZKglZN0TBosjaS6vluQ

Deleting an object
Method destroy() deletes an object:

s = pony.entities.Student.get_by pk(1)
s.destroy()

Data modification flag
pony.cache_modified is an observable that will be set to true once any entity object is
modified.

toString method
You can use object’s toString method for debug purposes.

4. Sending objects to the backend

When you want to store your updated objects in the database, you use the function
pony.getChanges(additional_info). It returns a JSON structure that needs to be sent to the
backend.

‘additional_info’ can be any JSON data or Pony entity objects.

5. Storing object in the database
JSON structure that is received from the frontend should to be passed to the save_changes()
function:

additional_info = save_changes(db, json):

Don’t forget to decorate the function where you call this method with the @db_session
decorator.

